

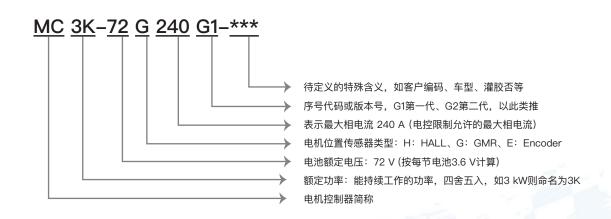
电摩电机控制器产品规格书

产品型号: MC3K-72H240

MC4K-72H300 MC5K-72G390

目录

1	厂而奉平洁忌	I
	1.1 命名说明	1
	1.2 应用范围	1
	1.3 产品简介	2
	1.4 外观尺寸	3
	1.5 产品重量	3
2	产品功能描述	4
	2.1 整车功能	
	2.2 安全保护功能	5
3	产品电气规范	6
	3.1 控制器技术参数	6
	3.2 工作边界	7
	3.3 电气安全	9
4	电气连接及接口定义	9
	4.1 电气结构框图	10
	4.2 控制端口针脚定义	10
	4.3 功率端子接线定义	13
5	产品环境适应规范	14
	5.1 环境温度范围	14
	5.2 产品环境活应性	14



6	产品安	安装	15
	6.1	控制器安装注意事项	15
	6.2	线束安装注意事项	15

1 产品基本信息

1.1 命名说明

注:

- ① 额定功率测定条件,环温23℃±5℃、自然冷却。 如为5.5 kW,则命名为6K,如为15 kW则命名为15K。
- ② 最大相电流测定条件,环温23°C \pm 5°C、自然冷却。240 A表示产品的最大相电流能力240 A持续1分钟,此值可能随用户的使用的电机及使用场景不同会有变化。

1.2 应用范围

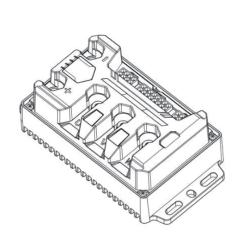
本产品规格书提供了深圳市好盈科技股份有限公司(简称好盈)电摩控制器的相关技术信息——好盈电摩控制器功能安全描述、允许的工作条件、技术边界条件、其他模块的接口技术条件及相关安装使用注意事项。

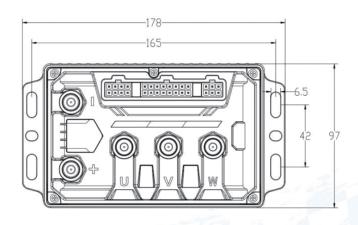
好盈电摩控制器只在本产品规格书所规定的条件下正常工作,好盈不对超出此产品规格书范围之外的使用负责。好盈对由于设计、生产、运输的问题而导致控制器失效负责,不对由于整车系统其他部件失效而引起的控制器失效负责。

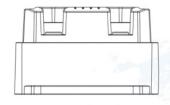
建议客户在装配了好盈控制器的整车说明书中加以说明,注意如下安全事项:

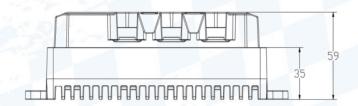
1) 确保整车工作时, 其转把不会发出错误的调速信号。

- 2) 确保给控制器的电刹信号的可靠性。
- 3) 确保机械刹车能提供足够的刹车力。
- 4)整车在重载工况下,控制器的表面温度升得很高,需告知用户在触摸温度很高的控制器或其安装区域时,需事先进行防护,以免被烫伤。
- 5) 控制器的工作电压超过了规定的36V安全电压,需告知用户不能直接接触控制器的带电部分(接插件),以免触电。


1.3 产品简介


本品采用32位ARM-M4高速MCU为主控芯片,采用高可靠的汽车级软件架构及FOC 矢量驱动算法,使得动力驱动顺滑噪音低且加速澎湃。深度调校的软件使得动力整体高效率、长续航,且支持多种个性化驾驶体验的动力调校。具备电压,电流,温度,短路,堵转等全方位保护和上电自检功能及IP67级三防等级确保动力可靠运行。具备三档运行模式切换、EABS刹车、TCS、跛行、定速巡航、Boost加速、辅助推车等功能,大大增强了驾驶体验及安全性。具有OTA升级,黑匣子故障追溯,电机自学习,支持多元通讯接口及编码器种类,使得控制器具有良好的兼容性及快速的故障分析解决能力。公司成立于2005年,深耕无人机等行业20载、准航空级品控能力值得信赖。




1.4 外观尺寸

控制器尺寸(178 * 97 * 59)mm。

1.5 产品重量

控制器重量约为 990 g。

2 产品功能描述

2.1 整车功能

定义的整车基础功能如下表(整车功能可以依据客户需求进行相应地调整)。

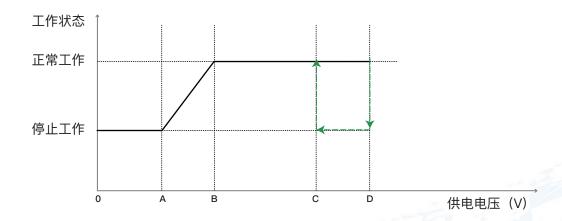
序号	整车功能	功能说明	
1	无极调速	通过检测转把输入(1.2 V – 3.8 V)的条件对整车进行无极调速	
2	档位 (三速)	通过检测档位电平判断是否切换档位,三档位高、中、低可选	
3	P档	通过检测P档电平变化判断是否有效,无效时不能启动车辆	
4	刹车	通过检测刹车电平变化判断是否启动该功能,刹车分高、低刹	
5	倒车	通过组合键启动倒车模式	
6	推车	通过组合键启动推车模式	
7	边撑	通过检测边撑电平启动该功能,边撑电平无效时车辆无法启动	
8	巡航	通过组合键启动巡航模式,通过油门或刹车退出巡航模式	
9	坐垫	通过检测坐垫电平启动该功能	
10	防盗	通过检测防盗器锁车信号,启动防盗模式, 静止过程,直接锁,骑行状态先停车再锁车	
11	一键修复	当发生转把、刹车故障时,通过组合键启动该功能	
12	TCS	防止车轮打滑,提高车辆的稳定性和安全性	
13	驻坡	在半坡中停车,可通过组合键进入辅助驻车模式	
14	自学习	控制器具有自学习功能,适配所工作电机参数	

2.2 安全保护功能

本产品通过软件实现转把故障、刹车故障、位置传感器故障、过压故障、欠压故障、过流故障、堵转故障、控制器过温故障、电机过温故障等检测。

序号	安全保护功能	功能描述	
1	过压保护	电池电压过高,控制器会切断到电机的输出	
2	软欠压保护	电池电压低于软欠压阈值的时,电池限流开始下降,直至最小值	
3	欠压保护	电池电压过低,控制器会切断到电机的输出	
4	过流保护 (电机相线短路)	控制器不会因为电机相线之间的短路而损坏 (注:短路保护只适用于电机任两相之间 以及某相与电源正极,不适用相线对地短路)	
5	过温保护	控制器具有过热保护功能,防止因过热而损坏	
6	缺相保护	支持整车零速状态的缺相检测	
7	堵转保护	电机发生堵转,控制器会在 2 秒钟之内切断输出	
8	传感器故障	检测到1个以上的电机位置信号失效,控制器会切断输出	
9	转把故障	调速把任何一根线的开路或任两根线之间的短路 控制器停止驱动电机	
10	起动锁止	上电时转把已不在零位(>1.2 V),控制器不能驱动电机 转把复位并重新拧转把方可正常起动电动车	

3 产品电气规范


3.1 控制器技术参数

型号	MC3K-72H240	MC4K-72H300	MC5K-72G390
母线最大电流	80 A	100 A	150 A
相线最大电流(幅值)	240 A	300 A	390 A
额定母线电压	48 V、60 V、72 V	48 V、60 V、72 V	48 V、60 V、72 V
额定功率	3 kW	4 kW	5 kW
峰值功率	5 kW	8 kW	10 kW
MOSFET数量 / 内阻	18管 / 5 mΩ	12管 / 1.6 mΩ	18管 / 1.6 mΩ
满电压最大边界值	见表1 控制器供电边界条件		
支持电机传感器	H: H	IALL G: GMR E: Enc	oder
控制方式		有感FOC	
通信方式		CAN / RS485 / UART	
最大控制器效率		98%	The same
冷却方式	自然风冷		
工作环境温度	-25°C ~ 60°C		
湿度边界	0% ~ 95% RH		
防护等级	IP67		

3.2 工作边界

表1 控制器供电边界条件(注:表中*的参数可能随客户的技术规格书而变化。)

电池电压	电池电压 A		L池电压 A B		С	D
48 V	35 V*	40 V*	56 V*	58 V*		
60 V	48 V*	53 V*	70 V*	72 V*		
72 V	58 V*	62 V*	84 V*	86 V*		

表2 欠压 / 过压保护边界条件(注:表中*的参数可能随客户的技术规格书而变化。)

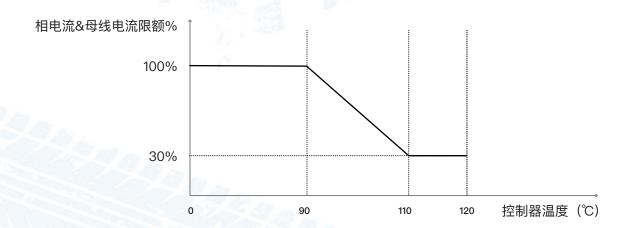

电池电压	48 V	60 V	72 V
欠压保护电压	35 V*	48 V*	58 V*
过压保护电压	58 V*	72 V*	86 V*

表3 额定电流 / 峰值电流边界条件 (注:表中的参数可能随客户的技术规格书而变化。)

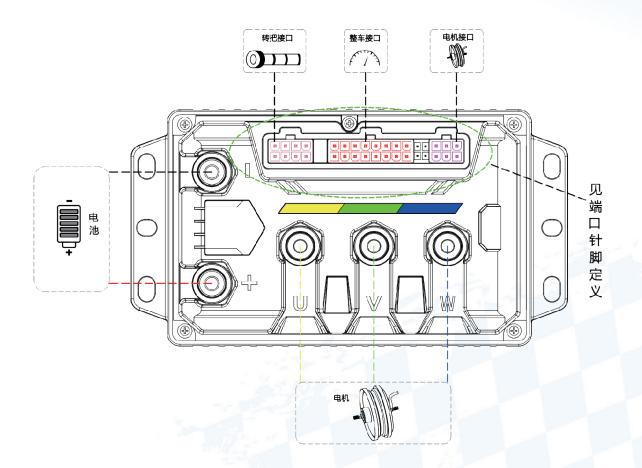
规格系列	性能参数	边界描述
MC3K-72H240	额定电流	环温23℃ ± 5℃、自然冷却,母线电流 50 A 及相电流 80 A ,持续运行 30 min 。
MC3K-72H240	峰值电流	环温23℃ ± 5℃、自然冷却,母线电流 80 A 及相电流 240 A ,持续运行 1 min 。
MC4K-72H300	额定电流	环温23℃ ± 5℃、自然冷却,母线电流 60 A 及相电流 85 A ,持续运行 30 min 。
MC4K-72H300	峰值电流	环温23℃ ± 5℃、自然冷却,母线电流 100 A 及相电 流 300 A ,持续运行 1 min 。
MC5K-72G390	额定电流	环温23℃ ± 5℃、自然冷却,母线电流 60 A 及相电流 100 A ,持续运行 30 min 。
WC3K-/2G390	峰值电流	环温23℃ ± 5℃、自然冷却,母线电流 150 A 及相电流 390 A ,持续运行 1 min 。

图1 母线电流、相电流温度边界(注:图中的参数可能随客户的技术规格书而变化。)

3.3 电气安全

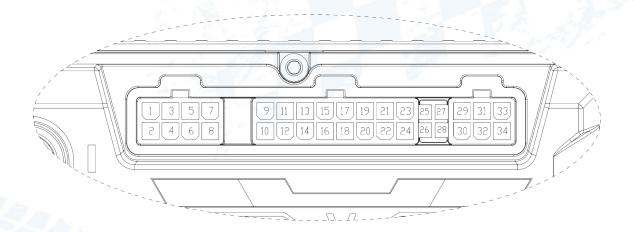
序号	试验项目	试验条件 / 要求
1	绝缘电阻试验	正极输出端与电调功率部分输入输出相连接,负极与信号输出端子或地(外壳)相连接。施加DC 500V,试验历时 1 分钟。电调动力端子对信号端子及外壳之间绝缘电阻均>1 MΩ。试验结束后,控制器功能正常。
2	绝缘强度试验	控制器被测电路的导线和保护接地电路之间施加DC 1500V,试验历时 1 分钟。试验过程中,漏电流≤ 5 mA,且不得发生击穿或飞弧现象。试验结束后,控制器功能正常。

4 电气连接及接口定义


控制器接线分两大类:控制线和功率线。

控制线通过控制线插头插到控制器的控制端口上,实现控制线的连接。

功率线通过接线端子接到控制器的功率端子上,实现电池对控制器的供电,以及控制器对电机的功率控制。

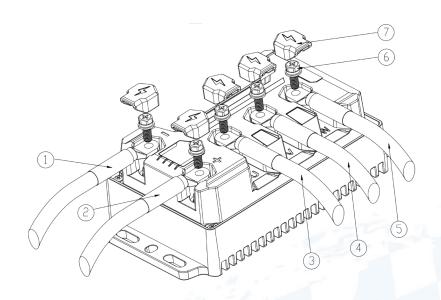


4.1 电气结构框图

4.2 控制端口针脚定义

控制端口型号: 6-16-4-8PIN母座, 与适配的控制线插头对插。

引脚号	默认引脚功能/功能说明	复用引脚功能 / 功能说明	对应接口
1	DI / 低有效,输入0 ~ 0.2 V	/	
2	ACC / 电门锁	/	
3	DI / 高有效,9 ~ 16 V	/	
4	DI / 高有效,9 ~ 16 V	/	# #
5	DI / 低有效,输入0 ~ 0.2 V	/	转把接口
6	ISD / 油门信号,0 ~ 4.3 V	/	
7	VCC / 油门电源+4.3 V	1	
8	GND / 油门电源地		
9	CANH	复用RS485A	
10	CANL	复用RS485B	
11	DI / 低有效,输入0 ~ 0.2 V	复用磁编码器PWM	
12	DI / 低有效,输入0 ~ 0.2 V	1	
13	DI / 低有效,输入0 ~ 0.2 V	/	
14	DI / 低有效,输入0 ~ 0.2 V		整车接口
15	DI / 低有效(输入0 ~ 0.2 V)	复用DO(0~5 V / 0~5 mA)	
16	DI / 低有效(输入0 ~ 0.2 V)	复用DO (0~5V/0~5 mA)	
17	DI / 低有效,输入0 ~ 0.2 V	/	
18	DI / 低有效,输入0 ~ 0.2 V	/	
19	DI / 低有效,输入0 ~ 0.2 V	复用UART RX TTL	



20	DO / 输出0 ~ 5 V / 0 ~ 5 mA	复用UART TX TTL	
21	轮动信号	输出	
22	GND	VCC输出GND	整车接口
23	DI / 低有效(输入0 ~ 0.2 V)	复用DO(0~5 V / 0~5 mA)	
24	VCC	预留输出+4.5 V	
25	+3.3 V	/	
26	GND	/	油汁拉口
27	SWD_DIO	1	调试接口
28	SWD_CLK	- /	
29	VCC / 编码器电源+4.5 V	/	
30	HALL A / 逻辑信号: 0V / 3.3 V	1	
31	MT / 电机温度检测 (支持NTC、KTY84、PT1000)	1	中机接口
32	HALLB / 逻辑信号: 0V / 3.3 V	1	电机接口
33	GND	/	
34	HALL C / 逻辑信号: 0 V / 3.3 V		

4.3 功率端子接线定义

功率线端子接线定义如下图所示:

序号	端子接线	数量	安装扭矩(N·m)
1	电源负极SC16-5端子	1	3.5 ~ 4.5
2	电源正极SC16-5端子	1	3.5 ~ 4.5
3	U相线SC16-5端子	1	3.5 ~ 4.5
4	V相线SC16-5端子	1	3.5 ~ 4.5
5	W相线SC16-5端子	1	3.5 ~ 4.5
6	接线端子固定螺丝-外六角内十字M5*14	5	1 - 1 - 1 - 1
7	硅胶防尘塞	5	

5 产品环境适应规范

5.1 环境温度范围

工作环境温度范围: - 25℃~60℃

长期存储环境温度范围: - 10°C ~ 40°C 存储环境适应温度范围: - 40°C ~ 85°C

5.2 产品环境适应性

序号	试验项目	试验条件 / 要求
1	低温存储试验	控制器放置温控箱 – 40℃环境中24h,恢复常温后能正常工作。
2	高温存储试验	控制器放置温控箱85℃环境中48h,恢复常温后能正常工作。
3	恒温恒湿试验	40℃ ± 2℃、相对湿度 93 ± 5%、48h的恒定湿热,试验完成后恢复到常温状态下外观无明显异常,控制器能正常工作,且各个功能都正常。
4	振动试验	扫频振动:频率10~25 Hz,振幅双振幅 1.2 mm;频率25~500 Hz,加速度30 m/s²。X、Y、Z共3个方向,每个方向振动时间:8h。随机振动:X、Y、Z共3个方向,每个方向振动时间:8h。试验后外壳无变形、断裂(裂缝)等现象,无器件和固定螺钉无松动,实验过程中和试验后控制器应能正常工作。

6产品安装

6.1 控制器安装注意事项

- 1) 安装区域应平整,不允许有异物,毛刺和焊接残渣等。
- **2)** 散热面需要有良好的空气流通,使控制器散热效果更好,能最大发挥控制器的工作性能。
- 3) 注意安装后的线材与车身是否出现干涉,避免线材磨损短路,导致功能异常。
- 4) 控制器安装使用螺栓固定(建议用M6螺栓),锁付力矩3.5 N·m~4.5 N·m。
- **5)** 连接器接插次数在控制器生命周期内需要小于20次,否则会增大接触电阻,进而导致温升过高。
- **6)** 控制器功率端子采用螺栓固定,需要控制好力矩范围,确保端子锁紧,否则会导致接触不良,引起发热。
- **7)** 控制器控制端子需要用力插入控制器插座,确保插到位,否则会松脱,接触不良、导致功能异常。

6.2 线束安装注意事项

- **1)** 线束上不同颜色的导线和防呆的接插件是用来防止接线错误,错误接线会导致控制器不能正常工作。
- **2)** 高温线与其他非高温线束不能捆扎在一起,防止因为高温导致绝缘层损坏,从而引起短路。
- 3) 确保正确的电池连线、防止极性接反或者错误的把电池线连到了相线。
- 4) 确保正确的电机连线, 防止相线的短路或开路。
- **5)** 确保正确的控制器接线操作,相线和电源线需按照规定的接线方式连接,否则电机不能正常工作甚至造成控制器损坏。
- 6) 确保线束组装完成后,需安装控制器硅胶防尘塞。

深圳市好盈科技股份有限公司 HOBBYWING TECHNOLOGY Co., LTD.

深圳市龙岗区宝龙工业城诚信路 8 号亚森创新科技产业园 4 栋

Building 4, YaYasen Chuangxin Hi-tech Industrial Park, 8 Chengxin Road, Baolong Industrial-ToTown, Longgang District, Shenzhen, China